博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
tensorflow训练代码
阅读量:6423 次
发布时间:2019-06-23

本文共 2091 字,大约阅读时间需要 6 分钟。

 

from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfmnist = input_data.read_data_sets("MNIST_data/",one_hot = True)sess = tf.InteractiveSession()def weight_Variable(shape):    initial = tf.truncated_normal(shape,stddev = 0.1)    return tf.Variable(initial)def bias_Variable(shape):    initial = tf.constant(0.1,shape = shape)    return tf.Variable(initial)def conv2d(input,filter):    return tf.nn.conv2d(input,filter,strides = [1,1,1,1],padding = 'SAME')def max_pool_2x2(input):    return tf.nn.max_pool(input,[1,2,2,1],[1,2,2,1],padding = 'SAME')x = tf.placeholder(tf.float32,[None,784])y = tf.placeholder(tf.float32,[None,10])x_image = tf.reshape(x,[-1,28,28,1])w_conv1 = weight_Variable([5,5,1,32])b_conv1 = bias_Variable([32])h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)h_pool1 = max_pool_2x2(h_conv1)w_conv2 = weight_Variable([5,5,32,64]) b_conv2 = bias_Variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)h_pool2 = max_pool_2x2(h_conv2)w_fc1 = weight_Variable([7*7*64,1024])b_fc1 = bias_Variable([1024])h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1) keep_prob = tf.placeholder(tf.float32)h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)w_fc2 = weight_Variable([1024,10])b_fc2 = bias_Variable([10])y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_conv),reduction_indices = [1]))train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))tf.global_variables_initializer().run()for i in range(20000):    batch = mnist.train.next_batch(50)    if i%100 == 0:        train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y:batch[1],keep_prob:1.0})        print('step %d,training accuracy %g'%(i,train_accuracy))    train_step.run(feed_dict = {x:batch[0],y:batch[1],keep_prob:0.5})print('test accuary %g'%accuracy.eval(feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))

 

转载地址:http://yorra.baihongyu.com/

你可能感兴趣的文章
Azure Media Service (1) 使用OBS进行Azure Media Service直播
查看>>
【转】c++ http下载文件
查看>>
matlab练习程序(水波特效)
查看>>
Ejabberd V.S Openfire
查看>>
【T03】理解私有地址和NAT
查看>>
手机和电话的验证
查看>>
jsp struts标签迭代各种数据
查看>>
alter system set events相关知识
查看>>
[Leetcode] Valid Sudoku
查看>>
Linux中使用crontab命令定时执行shell脚本或其他Linux命令
查看>>
Chrome开发工具Elements面板(编辑DOM和CSS样式)详解
查看>>
软件害死人
查看>>
MongoDB 之Java应用测试
查看>>
自动转向(Auto-Redirecting)技术
查看>>
缓存和字符串相互转换
查看>>
2018OKR年中回顾
查看>>
ArcGIS案例学习笔记-中国2000坐标转换实例
查看>>
[C# 基础知识系列]专题五:当点击按钮时触发Click事件背后发生的事情
查看>>
topcoder srm 490 div1
查看>>
TeeChart for vs 2005 破解
查看>>